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A NOTE ON PROFILE LIKELIHOOD, LEAST FAVOURABLE FAMILIES

s AND KULLBACK-LEIBLER DISTANCE
i A
o
?_:EI Robert Tibshirani and Larry Wasserman
‘-::::
\
e
e
oy
on
o SUMMARY
“.j;’ We consider several methods for reducing high dimensional models to one dimen-
s,
o sional models for the purpose of simplifying likelihood inferences. The equivalence
'.\'_'-.' between these methods is investigated.
Some Key Words : nuisance parameters, likelihood, exponential families.
',/::.J
A
oo
D)
o
o 1. INTRODUCTION .
SR o]
o e
P Consider a statistical model ' consisting of a class of densities {f(x|n)} where
<l
i ::'} n e QcRF is a vector-valued parameter of dimension greater than one. Often we are
-~
) .\q>~
;“}-: interested in a real valued function 6=6(n). Many useful inferential techniques involve ., oy 0 For |
9. " 3RA&I "__84
-* the log-likelihood function defined by ~aB 0
D) wunced O
'\{f “{cation _
. e [
vy L(n) =a + Tlog(f(x; In)) o
v b , , ]
3 where x|,x;, - *,X, are independent observations from the true density and a is an arbi- -1buttons B
_;5 t1ability Codes
3 trary real constant which, for convenience we shall take to be zero. In general, a one-  Ava1} ‘anesor —
! Dist Special
..l ﬁ / ‘
23
l‘,_-{

” *mte" . P I I I R At AT N AT % DR .. '\"-"-"\'\'V‘N' q“-\q \'n ﬁ- ‘.h-\. L INr
} .a-'_"r:.r".r.'a‘.r IR 3-".-:..-‘,:4-“.‘- RN a-r ORI ¢ SN A N T,

NN




-2-

dimensional likelihood function is not available for the parameter of interest 6. The

::'-\ problem of constructing such a likelihood function is discussed at length by Kalbfleisch
o and Sprott (1970).

oo

’j: The method that we discuss here for dealing with this problem is to strategically
i choose a sub-family of densities from I" indexed by 6. We then construct a likelihood
g

:‘;5 function based on the new reduced model. Specifically, let I'g = {f(x|6)} denote the
“" reduced model. (When convenient, I’y will also refer to the corresponding curve in the
\E parameter space (2). We then take L(0) = Y log(f(x; |8)). (Unqualified sums are to be

taken from i=1 to n).

We shall consider several such techniques for choosing I'g and investigate certain
equivalences between them. We note that some of the methods of model reduction that

we discuss were originally proposed for reasons other than constructing likelihood func-

tions.
5 2. DEFINITIONS
\‘:-
A The first reduction technique we consider is used to construct the profile likelihood (see
\ Kalbfleisch and Sprott, 1970). Let f(x |9) be the density which maximizes the probability
®
~’ of the observed data subject to 8(n) = 6. This defines a family indexed by 6 which we
‘, will denote by T'§L. The resulting log-likelihood function will be denoted by LPL(8).
BN
.TZ Note that LPL(6) passes through the global maximum of L(n).
L) .[
"’ Another method of defining a one parameter family is what Stein (1956) calls the
47 .
v,
“'j "least favourable family” given by
X
"’ - a
:ﬁ n(t) =n+t1;'vem)
l':‘q
A
) .' »
®
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.
N
where I, is the observed Fisher information at n and V6(n) is the vector whose i™ com-
-.- 1
- ponent is 96/dn;. This traces a straight line through 1 having direction I;,‘VO(T\).
.' ‘)
R0 Denote this family by I'§ and the corresponding log-likelihood by L3(6). This family
L
:.;';E has the property that the observed Fisher information for 0 is the same as in the full fam-
v R
o ily f(x|m) (Stein, 1956). Furthermore, any other (linear) sub-family through n has
LN
;_, greater Fisher information for 6. (Note that Stein used expected information in his
o
S definition. Here we follow Efron (1984) and use the observed information).
‘ '._\ Still another reduction method is employed by Efron (1981,1984) for the purpose of
,.\: constructing confidence intervals in multi-parameter and non-parametric settings. Let
Ol
b Co, = {n : 6(M) =60},
2
."'J
: the level surface of constant 6. Efron selects the value of N from Cq, such that the
,' , Kullback-Leibler distance
52
g KM, M) = ffex | mylog(f(x | nY/f(x | n)p(dx)
hhe
_- is minimized, where p is a dominating measure for the family I'. As 6 varies, this
§  i defines a one parameter family. Since Kullback-Leibler distance is not symmetric, one
‘\ can create a “forward" or "backward” family using K(ﬁ,n) or K(n,';]), respectively. The
Covd
2> corresponding families will be denoted by I'§ and I'§ and their log-likelihoods by LF(6)
o
: . and LB (0).
fw In section 3 we find the directions of the families at 1. Conditions under which the
-/'_:\-
E"‘\ families are equivalent will be derived. In section 4 we consider two examples.
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.;. 3. LOCAL EQUIVALENCE OF FAMILIES
!
N
va::' The directions of the families can be found using the following lemma.
b2
[ .
\‘E Lemma: Let g: R® 3R be three times differentiable with invertible Hessian V*g and
0N .
:-‘3 global minimum at € RE. Ler 8 : RX — R be continuously differentiable with non-zero
L Py
‘ , gradient on a neighbourhood of . Define a curve c(t) implicitly by
2 g(c(t) = min g(n)
'd'r' . t
’ where C; = {n: 6() =t} and let c(tg) =N. Then
o de(t Sy
o D)y = 2521, = Ao (V2! Vo)
%
"~_ ' where
- Ao = [(VO()'(V2g(m))™ (VO)I ™.
H Proof: First note that c(t) is differentiable by the implicit function theorem (Spivak,
o
_ E’ 1965, p. 41). Now, since c(t) is defined as a minimum we have (using Lagrange multi-
243
Z pliers)
2
= Vg(c(®) = Mt)VO(c(t)).
:: Differentiation with respect to t gives
o
2 (V2)D(c(t) = MO(VZ0)D(c(v)) + M(1)V8
Y
I3
CE_:: where V2h is a matrix with i,j* entry azh/anian,- for a function h. Evaluating this
?'?‘ expression at ty gives the form of D(c(t))|,. (Note that A(t)=0 at t =t5). The constant
g
~7 . . . . . . .
::E is determined by differentiating the Lagrange equation with respect to A then t.
:;,
¥ ..;-: Now let Dy be the direction vector of a particular family at n where a = PL,S,For B
+ AN
AN
".‘,:3 to indicate the appropriate family. We have
o~
5 ]
@
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o "3
oo
Ry Theorem: DEL = DS = a(I;)I;! VO(N) and DE = DB = a(iy)iz! VO(M) where
o . .
? a(A) = [(VOm)' AT (Ve
.
T Proof: The direction of T§ is (I''V6)owd0 which equals a(l;)I;!Ve(n) since

91/06 = a(l,). The direction of I'fL follows from the lemma by taking g to be minus the
log-likelihood and assuming the usual regularity conditions. The directions of rf and

I'3 are obtained by noting that to second order terms
a a 1 AL a
Kn,n)=KMn,n) = —2‘(71 -Nyin(M-7)

(see Kullback (1959, p. 28)). Applying the lemma yields the result.

Therefore Stein’s family and the profile likelihood family are locally equivalent as
are the two Kullback families. A sufficient condition for in=lIy is that the model be a
member of the exponential family. Hence in this case all four families are locally
equivalent. It can also be shown, using Hoeffding’s lemma (Efron, 1978) that in the
exponential family, the profile family and the forward Kullback family are globally

equivalent.

Outside of the exponential family, Iy and iy are in general different; their difference

can be expressed as a function of statistical curvature (Efron, 1975 and Skovgard, 1985).

The theorem suggests that inferential techniques based on the local properties of the
likelihood function will be similar for all four methods. In particular, note that the
second derivative (at ﬁ) of the log-likelihoods is (D))" I5' (D}) for a=PL and a = S and
is (DR)' iﬁl (D7) fora=B and F. Hence LPL(0) and L5(6) have the same second deriva-

tives as do LF(G) and LB (8). Agreement of the third derivatives can be shown by a simi-
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lar calculation. One application of this result would be the approximation of LPL(8) by
LS5(8). This can provide considerable simplification since L5(8) requires only the com-
putation of I and Ve(ﬁ) while LPL (@) requires a restricted maximization at each value of
0. This will be difficult if 8(n)) is a complicated function of n. However, the quality of

such an approximation is still an open question.

X 4. EXAMPLES

Example 1.

Let x be bivariate normal with mean 1 and covariance equal to the identity matrix.
Suppose the parameter of interest is 8 =1;/m,. Note that 8 is constant over rays through
the origin in E2. It is easy to show that K(ﬁ,n) reduces to 1/2 times the squared
Euclidean distance between ﬁ and n so that the forward and backward Kullback-Leibler
families and the profile likelihood based family all correspond to the circle passing

through the origin and ﬁ (see Figure la). The corresponding likelihood functions are

plotted in Figure 1b.

Example 2.

This example is motivated by Efron’s (1984) use of the least favourable family in

computing bootstrap confidence intervals. The data x| x;,...x, are fixed and the family

i of rescaled multinomial distributions M(n,)/n is considered. The parameter of interest

is a functional 6(w). The natural parameter is | =log ®. A least favourable family is

; drawn through the m.l.e g = " = (1/n,1/n,...1/n). We illustrate this in Figure 2 forn =3
g
’

with 8(w) = X = Y ®;x; and (x;,X2,X3) = (-1,0,1). The triangle represents the simplex

3
S3 ={w|w;20, Yw; =1}.
1
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L The least favourable family and backward Kullback-Leibler family agree while the

o

' g
"")' profile likelihood and forward Kullback-Leibler families coincide. Also shown are the
:.‘_{ level curves Cg, .

7
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